
 pg. 1 Copyright 2020-2022 by Exponam, LLC
 All rights reserved.

EXPONAM BUILDER CLI REFERENCE
Version 2.6

OVERVIEW

The Exponam Builder CLI is the command line utility for creating Exponam .BIG files from delimited data. This
document describes the CLI’s usage and features.

Determine which CLI is right for you

The CLI is available in two forms: as an executable application for use on Microsoft Windows, and as a jar file for use
with Java on any platform.

 The rest of this document describes the CLI features in terms of the Java CLI only. The features and options available within
the CLI are identical with both. For any questions regarding the Windows CLI, please contact info@exponam.com.

Obtaining the CLI

The CLI is available as a free download from Exponam.

1) Navigate to https://www.exponam.com and click the Developer Tools button.
2) Add the “Exponam Builder Command Line Interface (Java)” to your cart.
3) Proceed to checkout.
4) Enter the details on the checkout form and place the order.
5) You will receive an email with a download link for the jar file.
6) Download the jar file to an appropriate location on your computer.

Obtaining a license file

To unlock the full capabilities of the CLI, obtain a license file from Exponam. Contact Exponam at either:

 https://www.exponam.com/#contact, or
 sales@exponam.com

In the absence of a license file, the CLI is still functional, but narrows its capabilities to a demonstration mode.
Without a license file, the CLI will:

 Apply an upper limit to the number of rows in the output file of 3 million.
 Restrict encryption.
 Restrict the incorporation of custom story files, instead applying an Exponam-standard story file to each file.
 Mark the output file producer as Exponam.

Using the CLI

In summary, the CLI creates output .BIG files from input delimited data according to mapping information held in
sheet definition files. A .BIG file contains one or more sheets of data, where a sheet represents a table. Each sheet

 pg. 2 Copyright 2020-2022 by Exponam, LLC
 All rights reserved.

can be populated with data from one or more input delimited sources, which can be files or stdin. Optionally, the CLI
can apply properties and story files to the file, with public or private visibility.

Before enumerating the CLI parameters, a brief explanation of terms:

 Delimited files are text files containing tabular data, with a special character to separate fields. Common
examples include csv (comma-separated value) files, pipe-delimited files (that use the | character between
fields), and tab-delimited files.

 Stdin, which is short for “standard in”, is a mechanism by which data can be streamed into an application
from other process or source. It is a standard capability in operating environments and shells, including
those found on Windows (cmd, PowerShell) and UNIX/Linux/MacOS (bash, tcsh, zsh. ksh).

 A sheet definition file provides the mappings for the columns in the delimited file to the Exponam format. A
sheet definition can be produced for you using Exponam Builder, a Windows GUI application that serves as
an optional adjunct to the CLI. Alternately, a sheet definition file can be created using any text editor,
following the syntax documented in the appendix.

 Properties are optional metadata that you can apply to the document. Each property has a name and a
value.

 Story files are files that you can embed in the document.

The parameters that can be passed to the CLI fall into the following categories:

 Sheets
o -n[ame][#] name : an optional name for the sheet. An optional zero-based sheet number is

appended if the .BIG file is to have multiple sheets.
o -s[heetDefinition][#] filename : the sheet definition file describing the sheet.
o -i[nput][#] filename : a delimited file containing the data to be ingested into the sheet. This

parameter can be repeated if multiple delimited files are to be ingested into a given sheet.
 Data ingest treatment

o -skip : skip a row if one or more fields within the row have invalid data
o -zero : set fields with invalid data to an empty or null value

 Properties and stories
o -r name value or -cleartextProperty name value : a property that will have public

visibility
o -R name value or -secureProperty name value : a property that will have private visibility
o -m filename or -cleartextStoryFile filename : a story file with will have public visibility
o -M filename or -secureStoryFile filename : a story file that will have private visibility

 Optimization level
o -optimizationLevel level : degree of optimization to be performed during file generation,

per the following (default is 1)
 1 : fast output generation with some file size reduction - simple data exchange where

speed and small output size are both priorities
 2 : smallest possible output file size - simple data exchange where small output size is the

priority
 3 : small output size with minimal search indexes - data exchange and edge data with

minor gains in query performance
 4 : small output size with minimal search indexes - data exchange and edge data with

incrementally greater gains in query performance
 5 : small output size with minimal search indexes - data exchange and edge data with

incrementally greater gains in query performance
 6 : medium output size with light search indexes - data exchange and edge data with

incrementally greater gains in query performance
 7 : medium output size with light search indexes - data exchange and edge data with

incrementally greater gains in query performance
 8 : medium output size with light search indexes - data exchange and edge data with

incrementally greater gains in query performance
 9 : medium output size with light search indexes - data exchange and edge data with

incrementally greater gains in query performance

 pg. 3 Copyright 2020-2022 by Exponam, LLC
 All rights reserved.

 10 : larger output size with moderate search indexes - for more demanding query
environments

 11 : larger output size with moderate search indexes - for even more demanding query
environments

 12 : larger output size with moderate search indexes - for even more demanding query
environments

 13 : larger output size with comprehensive search indexes - for stand-alone data
warehouse extracts and similar usages

 14 : larger output size with comprehensive search indexes - for stand-alone data
warehouse extracts and similar usages

 15 : largest output size with fullest search indexes - for the most demanding query
environments

 Provenance level
o -provenanceLevel level : governs the level of detail emitted into provenance structures, per

the following (default is 1):
 0 : summary only
 1 : summary and high level details
 2 : summary and all details

 Output
o -p[assword] text : an optional password that can be supplied to encrypt the file
o -o[utput] filename : the name for the output .BIG file

 License
o -l[icense] filename : an optional license file that makes available the full capabilities of the

CLI
 Other parameters

o -v[erbose] : perform verbose logging
o -h[elp] : write the available parameters and descriptions to the console

Examples

(1) Simple generation of a single sheet from a single csv file with no license file

-i data.csv -s sheet.xml -o output.big

(2) Simple generation of a single sheet from delimited data read on stdin with no license file

-s sheet.xml -o output.big

(3) Generation with multiple files contributing to a single sheet with no license file

-i data1.csv -i data2.csv -s sheet.xml -o output.big

(4) Generation of two named sheets, each from its own csv file, with no license file

-i0 summary.csv -s summarySheet.xml -n0 Summary -i1 details.csv -s detailSheet.xml -n1 Details -o
output.big

(5) Simple generation of a single sheet from a single csv file with a license file

-i data.txt -s sheet.xml -l license.lic -o output.big

(6) Simple generation with optimization level 2 (guaranteed smallest size output file) and provenance level 2
(summary and all details related to provenance)

-i data.txt -s sheet.xml -optimizationLevel 2 -provenanceLevel 2 -o output.big

 pg. 4 Copyright 2020-2022 by Exponam, LLC
 All rights reserved.

(7) Generation with public and private properties and story files

-i data.csv -s sheet.xml -r Department Finance -R “Department Type” “Cost Center” -s LegalDisclaimer.rtf -
S DataConfidentialityStandards.doc -o output.big

 pg. 5 Copyright 2020-2022 by Exponam, LLC
 All rights reserved.

Additional Resources

Exponam Builder, a Windows GUI application, offers several capabilities to help you as you begin to use the Builder
CLI. As with Builder CLI, the Builder is available as a free download. If you opt to obtain a license file, that license
can be used with both the Builder and Builder CLI.

The first situation where you might use Builder is in generating sheet definition files. Provided you have a sample
data file that is representative of the type of data you’ll be working with, it’s as simple as dragging-and-dropping that
file on to Builder and then following a short sequence of steps in a wizard window. Builder will infer the data types
from the file you provide, and allow you to modify its results: renaming columns, changing column types, reviewing
the data that Builder sampled to arrive at its inferences, etc. Builder will then produce the sheet definition file, which
you can subsequently use in both Builder and Builder CLI.

The second situation is the construction of the actual command line parameters. Depending on your objectives for
the output file, the command line can become complex. Builder simplifies this for you. When you use Builder’s
wizard for generating a file, it will show you the command line that corresponds to the options you’ve selected. You
can copy that command line to the clipboard for later use. Of course, Builder can also generate the .BIG file for you
directly. But being able to use Builder to experiment with the options and arrive at the desired command line
parameters can make it that much easier to then use those command line parameters on a platform such as Linux.

 pg. 6 Copyright 2020-2022 by Exponam, LLC
 All rights reserved.

APPENDIX – SHEET DEFINITION FILES

The sheet definition file uses an XML format to describe the contents and interpretation of a delimited file. It is
comprised of the following elements:

- Tag “headerRow”
o attribute “present”

 values “true” or “false”
- Tag “delimiter”

o attribute “value”
 values “,” or “|” or “\t”

- Tag “columns”
o Tag “column”

 attribute “name” column name
 attribute “type”, values:

 Char (a single 16-but Unicode character)
 String
 Float (32-bit IEEE 754 floating point)
 Double (64-bit IEEE 754 floating point)
 BigDecimal (intended for arbitrary-precision decimal

arithmetic)
 Byte (8-bit signed two’s complement integer with a

minimum value of -128 and a maximum value of 127,
inclusive)

 Short (16-bit signed two's complement integer. It has
a minimum value of -32,768 and a maximum value of
32,767, inclusive)

 Integer (32-bit signed two's complement integer,
which has a minimum value of -231 and a maximum
value of 231-1)

 Long (64-bit two's complement integer. The signed
long has a minimum value of -263 and a maximum
value of 263-1)

 BigInteger (for arbitrarily large integer arithmetic)
 Date,
 DateTime,
 Time,
 Boolean

 attribute “inputMask” (applied to inbound data; semantics
depend on the target data type for the column)

 attribute “displayMask” (applied on rendering column values in
string representation; semantics depend on the data type for
the column)

As an example, the following is the sheet definition file for the FOREX sample data file that comes bundled with
Exponam Explorer:

<xml>

 <headerRow present="true"/>

 <delimiter value=","/>

 <columns>

 <column name="Currency Pair" type="String"/>

 <column name="Quote Date" type="Date"/>

 pg. 7 Copyright 2020-2022 by Exponam, LLC
 All rights reserved.

 <column name="Quote Time" type="Time" inputMask="mm:ss.f" displayMask="HH:mm:ss.f"/>

 <column name="Bid Price" type="Float" displayMask="#,###0.0000###;(#,###0.0000###);-"/>

 <column name="Ask Price" type="Float" displayMask="#,###0.0000###;(#,###0.0000###);-"/>

 <column name="Contributor Code" type="String"/>

 <column name="Region Code" type="String"/>

 <column name="City Code" type="String"/>

 </columns>

</xml>

